Aurifeuillian factorization
نویسندگان
چکیده
The Cunningham project seeks to factor numbers of the form bn±1 with b = 2, 3, . . . small. One of the most useful techniques is Aurifeuillian Factorization whereby such a number is partially factored by replacing bn by a polynomial in such a way that polynomial factorization is possible. For example, by substituting y = 2k into the polynomial factorization (2y2)2+1 = (2y2−2y+1)(2y2+2y+1) we can partially factor 24k+2+1. In 1962 Schinzel gave a list of such identities that have proved useful in the Cunningham project; we believe that Schinzel identified all numbers that can be factored by such identities and we prove this if one accepts our definition of what “such an identity” is. We then develop our theme to similarly factor f(bn) for any given polynomial f , using deep results of Faltings from algebraic geometry and Fried from the classification of finite simple groups.
منابع مشابه
Aurifeuillian factorizations and the period of the Bell numbers modulo a prime
We show that the minimum period modulo p of the Bell exponential integers is (pp−1)/(p−1) for all primes p < 102 and several larger p. Our proof of this result requires the prime factorization of these periods. For some primes p the factoring is aided by an algebraic formula called an Aurifeuillian factorization. We explain how the coefficients of the factors in these formulas may be computed.
متن کاملOn computing factors of cyclotomic polynomials
For odd square-free n > 1 the cyclotomic polynomial Φn(x) satisfies the identity of Gauss 4Φn(x) = An − (−1)(n−1)/2nB2 n. A similar identity of Aurifeuille, Le Lasseur and Lucas is Φn((−1)x) = C n − nxD n or, in the case that n is even and square-free, ±Φn/2(−x) = C n − nxD n. Here An(x), . . . , Dn(x) are polynomials with integer coefficients. We show how these coefficients can be computed by ...
متن کامل#A16 INTEGERS 12A (2012): John Selfridge Memorial Issue THE SEARCH FOR AURIFEUILLIAN-LIKE FACTORIZATIONS
We searched the Cunningham tables for new algebraic factorizations similar to those discovered by Aurifeuille. A naive search would have been too slow. We accelerated it enough to make it feasible. Many interesting results were found. –Dedicated to the memory of John Selfridge, who loved the integers.
متن کامل$n$-factorization Property of Bilinear Mappings
In this paper, we define a new concept of factorization for a bounded bilinear mapping $f:Xtimes Yto Z$, depended on a natural number $n$ and a cardinal number $kappa$; which is called $n$-factorization property of level $kappa$. Then we study the relation between $n$-factorization property of level $kappa$ for $X^*$ with respect to $f$ and automatically boundedness and $w^*$-$w^*$-continuity...
متن کاملOn the WZ Factorization of the Real and Integer Matrices
The textit{QIF} (Quadrant Interlocking Factorization) method of Evans and Hatzopoulos solves linear equation systems using textit{WZ} factorization. The WZ factorization can be faster than the textit{LU} factorization because, it performs the simultaneous evaluation of two columns or two rows. Here, we present a method for computing the real and integer textit{WZ} and textit{ZW} factoriz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 75 شماره
صفحات -
تاریخ انتشار 2006